मराठी

X D Y D X − Y + X Sin ( Y X ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]
बेरीज

उत्तर

We have,
\[x\frac{dy}{dx} - y + x \sin \left( \frac{y}{x} \right) = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y - x \sin \left( \frac{y}{x} \right)}{x}\]
This is a homogenoeus differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx - x \sin v}{x}\]
\[ \Rightarrow x\frac{dv}{dx} = v - \sin v - v\]
\[ \Rightarrow x\frac{dv}{dx} = - \sin v\]
\[ \Rightarrow\text{ cosec }v dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int \text{ cosec }v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow - \int \text{ cosec }v dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \log \left|\text{ cosec }v - \cot v \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{1}{\text{ cosec }v - \cot v} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \log \left|\text{ cosec }v + \cot v \right| = \log \left| Cx \right|\]
\[ \Rightarrow \log \left| \frac{1 + \cos v}{\sin v} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \frac{1 + \cos v}{\sin v} = Cx\]
\[ \Rightarrow x \sin v = \frac{1}{C}\left( 1 + \cos v \right)\]
\[ \Rightarrow x \sin v = K\left( 1 + \cos v \right) ...........\left(\text{where, }K = \frac{1}{C} \right)\]
\[\text{Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow x \sin\left( \frac{y}{x} \right) = K\left[ 1 + \cos\left( \frac{y}{x} \right) \right]\]
\[\text{ Hence, }x \sin\left( \frac{y}{x} \right) = K\left[ 1 + \cos\left( \frac{y}{x} \right) \right]\text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 34 | पृष्ठ ८४

संबंधित प्रश्‍न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Which of the following is a homogeneous differential equation?


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×