हिंदी

X D Y D X − Y + X Sin ( Y X ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]
योग

उत्तर

We have,
\[x\frac{dy}{dx} - y + x \sin \left( \frac{y}{x} \right) = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y - x \sin \left( \frac{y}{x} \right)}{x}\]
This is a homogenoeus differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx - x \sin v}{x}\]
\[ \Rightarrow x\frac{dv}{dx} = v - \sin v - v\]
\[ \Rightarrow x\frac{dv}{dx} = - \sin v\]
\[ \Rightarrow\text{ cosec }v dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int \text{ cosec }v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow - \int \text{ cosec }v dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \log \left|\text{ cosec }v - \cot v \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{1}{\text{ cosec }v - \cot v} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \log \left|\text{ cosec }v + \cot v \right| = \log \left| Cx \right|\]
\[ \Rightarrow \log \left| \frac{1 + \cos v}{\sin v} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \frac{1 + \cos v}{\sin v} = Cx\]
\[ \Rightarrow x \sin v = \frac{1}{C}\left( 1 + \cos v \right)\]
\[ \Rightarrow x \sin v = K\left( 1 + \cos v \right) ...........\left(\text{where, }K = \frac{1}{C} \right)\]
\[\text{Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow x \sin\left( \frac{y}{x} \right) = K\left[ 1 + \cos\left( \frac{y}{x} \right) \right]\]
\[\text{ Hence, }x \sin\left( \frac{y}{x} \right) = K\left[ 1 + \cos\left( \frac{y}{x} \right) \right]\text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 34 | पृष्ठ ८४

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×