हिंदी

Y D X + { X Log ( Y X ) } D Y − 2 X D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]
योग

उत्तर

We have, 
\[y dx + \left\{ x \log \left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]
\[ \Rightarrow \left\{ 2x - x \log \left( \frac{y}{x} \right) \right\} dy = y dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{2x - x \log \left( \frac{y}{x} \right)}\]
This is a homogenoeus differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx}{2x - x \log v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v}{2 - \log v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{2 - \log v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 2v + v \log v}{2 - \log v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \log v - v}{2 - \log v}\]
\[ \Rightarrow \frac{2 - \log v}{v \log v - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2 - \log v}{v \log v - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 - \left( \log v - 1 \right)}{v\left( \log v - 1 \right)}dv = \int\frac{1}{x}dx\]
\[\text{ Putting }\log v - 1 = t\]
\[ \Rightarrow \frac{1}{v}dv = dt\]
\[ \therefore \int\frac{1 - t}{t}dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\left( \frac{1}{t} - 1 \right)dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| t \right| - t = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \log v - 1 \right| - \left( \log v - 1 \right) = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \log v - 1 \right| - \log v = \log \left| x \right| + \log C_1 ...........\left(\text{where, }\log C_1 = \log C - 1 \right)\]
\[ \Rightarrow \log \left| \frac{\log v - 1}{v} \right| = \log \left| C_1 x \right|\]
\[ \Rightarrow \frac{\log v - 1}{v} = C_1 x\]
\[ \Rightarrow \log v - 1 = C_1 xv\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\log \frac{y}{x} - 1 = C_1 x \times \frac{y}{x}\]
\[ \Rightarrow \log \frac{y}{x} - 1 = C_1 y\]
\[\text{ Hence, }\log \frac{y}{x} - 1 = C_1 y\text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 35 | पृष्ठ ८४

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×