English

Y D X + { X Log ( Y X ) } D Y − 2 X D Y = 0 - Mathematics

Advertisements
Advertisements

Question

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]
Sum

Solution

We have, 
\[y dx + \left\{ x \log \left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]
\[ \Rightarrow \left\{ 2x - x \log \left( \frac{y}{x} \right) \right\} dy = y dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{2x - x \log \left( \frac{y}{x} \right)}\]
This is a homogenoeus differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx}{2x - x \log v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v}{2 - \log v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{2 - \log v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 2v + v \log v}{2 - \log v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \log v - v}{2 - \log v}\]
\[ \Rightarrow \frac{2 - \log v}{v \log v - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2 - \log v}{v \log v - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 - \left( \log v - 1 \right)}{v\left( \log v - 1 \right)}dv = \int\frac{1}{x}dx\]
\[\text{ Putting }\log v - 1 = t\]
\[ \Rightarrow \frac{1}{v}dv = dt\]
\[ \therefore \int\frac{1 - t}{t}dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\left( \frac{1}{t} - 1 \right)dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| t \right| - t = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \log v - 1 \right| - \left( \log v - 1 \right) = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \log v - 1 \right| - \log v = \log \left| x \right| + \log C_1 ...........\left(\text{where, }\log C_1 = \log C - 1 \right)\]
\[ \Rightarrow \log \left| \frac{\log v - 1}{v} \right| = \log \left| C_1 x \right|\]
\[ \Rightarrow \frac{\log v - 1}{v} = C_1 x\]
\[ \Rightarrow \log v - 1 = C_1 xv\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\log \frac{y}{x} - 1 = C_1 x \times \frac{y}{x}\]
\[ \Rightarrow \log \frac{y}{x} - 1 = C_1 y\]
\[\text{ Hence, }\log \frac{y}{x} - 1 = C_1 y\text{ is the required solution }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 35 | Page 84

RELATED QUESTIONS

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×