Advertisements
Advertisements
Question
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solution
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
This is an homogenous equation, put y= vx
\[\left( v^4 x^4 - 2v x^4 \right) + \left( x^4 - 2 v^3 x^4 \right) \left[ v + x\frac{dv}{dx} \right] = 0\]
\[\left( v^4 x^4 - 2v x^4 \right) = \left( 2 v^3 x^4 - x^4 \right) \left[ v + x\frac{dv}{dx} \right]\]
\[v x^4 \left( v^3 - 2 \right) = x^4 \left( 2 v^3 - 1 \right) \left[ v + x\frac{dv}{dx} \right]\]
\[v\left( v^3 - 2 \right) = \left( 2 v^3 - 1 \right)v + x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left[ v^3 - 2 - 2 v^3 + 1 \right] = x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left( - 1 - v^3 \right) = x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left( 1 + v^3 \right) = x\left( 1 - 2 v^3 \right)\frac{dv}{dx}\]
\[\frac{dx}{x} = \frac{\left( 1 - 2 v^3 \right)}{v\left( 1 + v^3 \right)}dv\]
On integrating both side of the equation we get,
\[\int\frac{dx}{x} = \int\frac{\left( 1 - 2 v^3 \right)}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1 + v^3 - 3 v^3}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1 + v^3}{v\left( 1 + v^3 \right)}dv - \int\frac{3v}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1}{v}dv - \int\frac{3 v^2}{\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \log_e v - \int\frac{dt}{t}\]
\[ \Rightarrow \log_e x = \log_e v - \log_e \left( 1 + v^3 \right) + c.......\text{ let }\left( 1 + v^3 \right) = t, 3 v^2 dv = dt\]
\[ \Rightarrow \log_e x = \log_e \frac{v}{1 + v^3} + c\]
As `v = y/x`
\[ \Rightarrow \log_e x = \log_e \frac{\frac{y}{x}}{1 + y^\frac{3}{x}} + c\]
\[ \Rightarrow \log_e x = \log_e \frac{y x^2}{x^3 + y^3} + c\]
As y(1) = 1
\[ \Rightarrow \log_e 1 = \log_e \frac{1}{1 + 1} + c\]
\[ \Rightarrow 0 = \log_e \frac{1}{2} + c\]
\[c = - \log_e \frac{1}{2}\]
\[ \Rightarrow c = \log_e 2\]
\[ \therefore \log_e x = \log_e \frac{y x^2}{x^3 + y^3} + \log_e 2\]
APPEARS IN
RELATED QUESTIONS
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
(x2 + 3xy + y2) dx − x2 dy = 0
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.