Advertisements
Advertisements
Question
Solution
We have,
\[\left( 1 + e^\frac{x}{y} \right) dx + e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{e^\frac{x}{y} \left( 1 - \frac{x}{y} \right)}{1 + e^\frac{x}{y}}\]
This is a homogeneous differential equation .
\[\text{ Putting }x = vy \text{ and }\frac{dx}{dy} = v + y\frac{dv}{dy},\text{ we get }\]
\[v + y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v} - v\]
\[ \Rightarrow y\frac{dv}{dy} = \frac{- e^v + e^v v - v - v e^v}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{v + e^v}{1 + e^v}\]
\[ \Rightarrow \frac{1 + e^v}{v + e^v}dv = - \frac{1}{y}dy\]
Integrating both sides, we get
\[\int\frac{1 + e^v}{v + e^v}dv = - \int\frac{1}{y}dy\]
\[ \Rightarrow \log \left| v + e^v \right| = - \log \left| y \right| + \log C\]
\[ \Rightarrow \left| v + e^v \right| = \left| \frac{C}{y} \right|\]
\[ \Rightarrow v + e^v = \frac{C}{y}\]
\[\text{ Putting }v = \frac{x}{y},\text{ we get }\]
\[\frac{x}{y} + e^\frac{x}{y} = \frac{C}{y}\]
\[ \Rightarrow x + y e^\frac{x}{y} = C\]
\[\text{ Hence, }x + y e^\frac{x}{y} = C\text{ is the required solution }.\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)