Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( 1 + e^\frac{x}{y} \right) dx + e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{e^\frac{x}{y} \left( 1 - \frac{x}{y} \right)}{1 + e^\frac{x}{y}}\]
This is a homogeneous differential equation .
\[\text{ Putting }x = vy \text{ and }\frac{dx}{dy} = v + y\frac{dv}{dy},\text{ we get }\]
\[v + y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v} - v\]
\[ \Rightarrow y\frac{dv}{dy} = \frac{- e^v + e^v v - v - v e^v}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{v + e^v}{1 + e^v}\]
\[ \Rightarrow \frac{1 + e^v}{v + e^v}dv = - \frac{1}{y}dy\]
Integrating both sides, we get
\[\int\frac{1 + e^v}{v + e^v}dv = - \int\frac{1}{y}dy\]
\[ \Rightarrow \log \left| v + e^v \right| = - \log \left| y \right| + \log C\]
\[ \Rightarrow \left| v + e^v \right| = \left| \frac{C}{y} \right|\]
\[ \Rightarrow v + e^v = \frac{C}{y}\]
\[\text{ Putting }v = \frac{x}{y},\text{ we get }\]
\[\frac{x}{y} + e^\frac{x}{y} = \frac{C}{y}\]
\[ \Rightarrow x + y e^\frac{x}{y} = C\]
\[\text{ Hence, }x + y e^\frac{x}{y} = C\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Which of the following is a homogeneous differential equation?
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)