मराठी

( 1 + E X / Y ) D X + E X / Y ( 1 − X Y ) D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

उत्तर

We have, 
\[\left( 1 + e^\frac{x}{y} \right) dx + e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{e^\frac{x}{y} \left( 1 - \frac{x}{y} \right)}{1 + e^\frac{x}{y}}\]
This is a homogeneous differential equation .
\[\text{ Putting }x = vy \text{ and }\frac{dx}{dy} = v + y\frac{dv}{dy},\text{ we get }\]
\[v + y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{e^v \left( 1 - v \right)}{1 + e^v} - v\]
\[ \Rightarrow y\frac{dv}{dy} = \frac{- e^v + e^v v - v - v e^v}{1 + e^v}\]
\[ \Rightarrow y\frac{dv}{dy} = - \frac{v + e^v}{1 + e^v}\]
\[ \Rightarrow \frac{1 + e^v}{v + e^v}dv = - \frac{1}{y}dy\]
Integrating both sides, we get 
\[\int\frac{1 + e^v}{v + e^v}dv = - \int\frac{1}{y}dy\]
\[ \Rightarrow \log \left| v + e^v \right| = - \log \left| y \right| + \log C\]
\[ \Rightarrow \left| v + e^v \right| = \left| \frac{C}{y} \right|\]
\[ \Rightarrow v + e^v = \frac{C}{y}\]
\[\text{ Putting }v = \frac{x}{y},\text{ we get }\]
\[\frac{x}{y} + e^\frac{x}{y} = \frac{C}{y}\]
\[ \Rightarrow x + y e^\frac{x}{y} = C\]
\[\text{ Hence, }x + y e^\frac{x}{y} = C\text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 25 | पृष्ठ ८३

संबंधित प्रश्‍न

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Which of the following is a homogeneous differential equation?


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×