Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{8 x^2 - 3xy + 2 y^2}{x^2 + y^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get}\]
\[v + x\frac{dv}{dx} = \frac{8 x^2 - 3v x^2 + 2 v^2 x^2}{x^2 + v^2 x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{8 - 3v + 2 v^2}{1 + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{8 - 4v + 2 v^2 - v^3}{1 + v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{4\left( 2 - v \right) + v^2 \left( 2 - v \right)}{1 + v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{\left( 4 + v^2 \right)\left( 2 - v \right)}{1 + v^2}\]
\[ \Rightarrow \frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)}dv = \int\frac{1}{x}dx . . . . . (1)\]
Let us consider the left hand side of (1) .
Using partial fraction,
\[\text{ Let }\frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)} = \frac{Av + B}{4 + v^2} + \frac{C}{2 - v}\]
\[ \Rightarrow 1 + v^2 = Av\left( 2 - v \right) + B\left( 2 - v \right) + C \left( 4 + v^2 \right)\]
\[ \Rightarrow 1 + v^2 = 2Av - A v^2 + 2B - Bv + 4C + C v^2 \]
Comparing the coefficients of both sides, we get
\[2A - B = 0 \]
\[ - A + C = 1 \]
& \[ 2B + 4C = 1\]
Solving these three equations, we get
\[A = \frac{- 3}{8}, B = \frac{- 3}{4}\text{ and }C = \frac{5}{8} \]
\[ \therefore \frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)} = \frac{- \frac{3}{8}v - \frac{3}{4}}{4 + v^2} + \frac{\frac{5}{8}}{2 - v} . . . . . (2)\]
From (1) and (2), we get
\[\int\frac{- \frac{3}{8}v - \frac{3}{4}}{4 + v^2} + \frac{\frac{5}{8}}{2 - v} = \int\frac{1}{x}dx \]
\[ \Rightarrow - \frac{3}{8}\int\frac{v}{v^2 + 4}dv - \frac{3}{4}\int\frac{1}{v^2 + 4}dv + \frac{5}{8}\int\frac{1}{2 - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{- 3}{16}\log \left| v^2 + 4 \right| - \frac{3}{4 \times 2}\tan {}^{- 1} \frac{v}{2} - \frac{5}{8}\log \left| 2 - v \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow - \frac{3}{4 \times 2}\tan {}^{- 1} \frac{v}{2} = \log \left| Cx \left( 2 - v \right)^\frac{5}{8} \left( v^2 + 4 \right)^\frac{3}{16} \right|\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{v}{2}} = C\left| x \left( 2 - v \right)^\frac{5}{8} \left( v^2 + 4 \right)^\frac{3}{16} \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C\left| x \left( 2 - \frac{y}{x} \right)^\frac{5}{8} \left( \frac{y}{x^2}^2 + 4 \right)^\frac{3}{16} \right|\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C\left| x \times \frac{1}{x} \left( 2x - y \right)^\frac{5}{8} \left( y^2 + 4 x^2 \right)^\frac{3}{16} \right|\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C \left| 2x - y \right|^\frac{5}{8} \left( y^2 + 4 x^2 \right)^\frac{3}{16} \]
\[\text{ Hence, }e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C \left| 2x - y \right|^\frac{5}{8} \left( y^2 + 4 x^2 \right)^\frac{3}{16}\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
Which of the following is not a homogeneous function of x and y.
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)