मराठी

( X − Y ) D Y D X = X + 2 Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

उत्तर

\[\left( x - y \right) \frac{dy}{dx} = x + 2y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y}\]
This is a homogeneous differential equatiuon .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + 2v}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v + v^2}{1 - v}\]
\[ \Rightarrow \frac{1 - v}{1 + v + v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{1 - v}{1 + v + v^2}dv = \int\frac{1}{x}dx\]
\[\Rightarrow \int\frac{- (v - 1)}{v^2 + v + 1}dv = \frac{dx}{x}\]
\[ \Rightarrow \int\frac{1}{2} \times \frac{2v - 2}{v^2 + v + 1}dv = \int\frac{- dx}{x}\]
\[ \Rightarrow \int\frac{(2v + 1) - 3}{v^2 + v + 1}dv = - \int\frac{2dx}{x}\]
\[ \Rightarrow \int\frac{(2v + 1)}{v^2 + v + 1}dv - \int\frac{3}{v^2 + v + 1}dv = - \int\frac{2dx}{x}\]
\[\text{ Let }I_1 = \int\frac{(2v + 1)}{v^2 + v + 1}dv\]
\[\text{ and }I_2 = \int\frac{3}{v^2 + v + 1}dv\]
\[I = I_1 + I_2 \]
\[I_1 = \int \frac{2v + 1}{v^2 + v + 1}dv\]
\[\text{ let }v^2 + v + 1 = t \Rightarrow (2 v^2 + 1)dv = dt\]
\[\text{ therefore, }I_1 = \int \frac{2v + 1}{v^2 + v + 1}dv = \int\frac{dt}{t} = \log\left| t \right| = \log\left| v^2 + v + 1 \right|\]
\[\text{ hence, } I_1 = log\left| v^2 + v + 1 \right|\]
\[\text{ Also }, I_2 = \int\frac{3}{v^2 + v + 1}dv = \int\frac{3}{v^2 + 2v\left( \frac{1}{2} \right) + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \int\frac{3}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv = 3\left( \frac{2}{\sqrt{3}} \right) \tan^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) = 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)\]
\[ I_2 = 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)\]
\[\text{ Hence, }I = I_1 + I_2 = log\left| v^2 + v + 1 \right| + 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)\]
\[\text{ therefore, }log\left| v^2 + v + 1 \right| + 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) = - 2\log\left| x \right| + C\]
putting the value of v in the above equation we get, 
\[log\left| x^2 + y^2 + xy \right| = 2\sqrt{3} ta n^{- 1} \left( \frac{x + 2y}{x\sqrt{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 32 | पृष्ठ ८३

संबंधित प्रश्‍न

 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×