मराठी

Solve the Following Initial Value Problem: (X2 + Y2) Dx = 2xy Dy, Y (1) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0

उत्तर

(x2 + y2)dx = 2xy dy, y(1) = 0
We have,
(x2 + y2) dx = 2xy        .....(i)
This is a homogenous equation, so let us take y = vx
\[\text{ Then, }\frac{dy}{dx} = v + x\frac{dv}{dx}\]
Putting y = vx in equation (i)
\[\left( x^2 + v^2 x^2 \right) = 2v x^2 \left( v + x\frac{dv}{dx} \right)\]
\[ x^2 \left( 1 + v^2 \right) = 2v x^2 \left( v + x\frac{dv}{dx} \right)\]
\[\left( 1 + v^2 \right) = 2 v^2 + 2vx\frac{dv}{dx}\]
\[1 - v^2 = 2vx\frac{dv}{dx}\]
\[\frac{dx}{x} = \frac{2v dv}{1 - v^2}\]
On integrating both sides, we get
\[\int\frac{1}{x}dx = \int\frac{2v}{1 - v^2}dv\]
\[\text{ Let, }\left( 1 - v^2 \right) = t\]
\[ \Rightarrow - 2v dv = dt\]
\[ \log_e x = - \int\frac{dt}{t} \]
\[ \log_e x = - \log_e t + c\]
\[ \log_e x = - \log_e \left( 1 - \frac{y^2}{x^2} \right) + c\]
\[ \log_e \left[ x\left( \frac{x^2 - y^2}{x^2} \right) \right] = c\]
\[ \log_e \left( \frac{x^2 - y^2}{x} \right) = c\]
\[\text{ As }y\left( 1 \right) = 0\]
\[ \Rightarrow c = 0\]
\[ \therefore \log_e \left( \frac{x^2 - y^2}{x} \right) = 0\]
\[ \Rightarrow \frac{x^2 - y^2}{x} = 1\]
\[ \Rightarrow x^2 - y^2 = x\]



shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 36.1 | पृष्ठ ८४

संबंधित प्रश्‍न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Which of the following is a homogeneous differential equation?


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×