मराठी

Show that the given differential equation is homogeneous and solve them. x dy-y dx= x2+y2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`

बेरीज

उत्तर

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`,

Which can be written as `x  dy/dx = y + sqrt (x^2 + y^2)`

or `dy/dx = y/x + sqrt (1 + (y/x)^2)`        ....(1)

Since R.H.S. is of the form `g(y/x)`, and so it is a homogeneous function of degree zero.

Therefore equation (1) is a homogeneous differential equation.

To solve this, put y = vx

⇒ `dy/dx = v + x (dv)/dx`

Substituting the value of y and `dy/dx` in (1), we get

`v + x (dv)/dx = v + sqrt (1 + v^2)`

⇒ `x (dv)/dx = sqrt(1 + v^2)`

⇒ `dx/x = (dv)/sqrt(1 + v^2)`

⇒ `int dx/x = int (dv)/ sqrt(1 + v^2)`

⇒ `log x + log C_1 = log |v + sqrt (1+ v^2)|`

⇒ `log x + log C_1 = log |y/x + sqrt (1 + y^2/x^2)|`

⇒ `log C_1 x = log |y + sqrt (x^2 + y^2)| - log x`

⇒ `pm C_1 x^2 = y + sqrt (x^2 + y^2)`

⇒ `Cx^2 = y + sqrt (x^2 + y^2)` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.5 [पृष्ठ ४०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.5 | Q 6 | पृष्ठ ४०६

संबंधित प्रश्‍न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×