Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
उत्तर
\[x( x^2 + 3 y^2 )dx + y( y^2 + 3 x^2 )dy = 0, y(1) = 1\]
\[ \frac{dy}{dx} = \frac{- x( x^2 + 3 y^2 )}{y( y^2 + 3 x^2 )}\]
it is a homogeneous equation . Put y = vx
\[\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ So, }v + x\frac{dv}{dx} = - \frac{x( x^2 + 3 v^2 x^2 )}{vx( v^2 x^2 + 3 x^2 )}\]
\[x\frac{dv}{dx} = - \frac{(1 + 3 v^2 )}{v( v^2 + 3)} - 3\]
\[ = \frac{- 1 - 3 v^2 - v^4 - 3 v^2}{v( v^2 + 3)}\]
\[x\frac{dv}{dx} = \frac{- v^4 - 6 v^2 - 1}{v( v^2 + 3)}\]
\[\frac{v( v^2 + 3)}{v^4 + 6 v^2 + 1}dv = - \frac{dx}{x}\]
\[\int\frac{4 v^3 + 12v}{v^4 + 6 v^2 + 1}dv = - 4\int\frac{dx}{x}\]
\[\log\left| v^4 + 6 v^2 + 1 \right| = \log\left| \frac{c}{x^4} \right|\]
\[\left| v^4 + 6 v^2 + 1 \right| = \left| \frac{c}{x^4} \right|\]
\[\left| y^4 + 6 y^2 x^2 + x^4 \right| = \left| c \right| . . . . (1)\]
\[\text{ put }y = 1, x = 1\]
\[(1 + 6 + 1) = c \Rightarrow c = 8\]
\[\text{ put }c = 8\text{ in equation }(1), \]
\[( y^4 + x^4 + 6 x^2 y^2 ) = 8\]
APPEARS IN
संबंधित प्रश्न
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.