मराठी

For the differential equation find a particular solution satisfying the given condition: 2xy+y2-2x2 dydx=0;y=2 when x = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1

बेरीज

उत्तर

The given equation

`2xy + y^2 - 2x^2 dy/dx = 0`

or `dy/dx = (2xy + y^2)/(2x^2)`

`= y/x + 1/2(y/x)^2`         ....(i)

Clearly, this equation is a differential equation.

∴ putting y = vx

`dy/dx = v + x (dv)/dx`   ....(in equation (i))

`v + x (dv)/dx = v + 1/2 v^2`

`=> x (dv)/dx = 1/2 v^2`

`=> 2 xx 1/v^2 (dv) = 1/x dv`

On integrating,

`2 int 1/v^2 dv = int 1/x dv - 2/v = log |x| + C`

So, on substituting `(y/x)` in place of v,

`- (2x)/y = log |x| + C`     ....(ii)

Given y = 2 if x = 1                 ...[from equation (ii)]

`(- 2)/2 = log1 + C`

- 1 = 0 + C

⇒ C = - 1

On putting C = – 1 in equation (ii)

`(- 2x)/y = log |x| - 1`

y = `(2x)/(1 - log |x|)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.5 [पृष्ठ ४०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.5 | Q 15 | पृष्ठ ४०६

संबंधित प्रश्‍न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×