Advertisements
Advertisements
प्रश्न
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
उत्तर
xdy - ydx = `sqrt(x^2 + y^2)dx`
⇒ xdy = `[ y + sqrt(x^2+y^2)]dx`
`dy/dx = (y + sqrt(x^2+y^2))/x` ...(1)
Let F (x,y) = `(y + sqrt(x^2+y^2))/x`
∴ `"F"(lambdax,lambday) = (lambdax+sqrt((lambdax)^2+ (lambday)^2))/(lambdax) = (y + sqrt(x^2+y^2))/(x) = lambda^0 . "F"(x,y)`
Therefore, the given differential equation is a homogeneous equation.To solve it, we make the substitution as:
y = vx
⇒ `d/dx (y) = d/dx (vx)`
⇒ `dy/dx = v + x (dv)/(dx)`
Substituting the values of v and `dy/dx` in equation (1), we get:
`v + x (dv)/dx = (vx+sqrt(x^2 + (vx)^2))/x`
⇒ `v + x (dv)/dx = v + sqrt(1+v^2)`
⇒ `(dv)/sqrt(1+v^2) = dx/x`
Integrating both sides, we get:
`log |v + sqrt(1+v^2)| = log|x| + log "C"`
⇒ `log |y/x + sqrt(1+y^2/x^2)| = log|"C"x|`
⇒ `log|(y + sqrt(x^2+y^2))/x| = log|"C"x|`
⇒ `y + sqrt(x^2+y^2) = "C"x^2`
This is the required solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)