मराठी

Solve the Differential Equation: X Dy - Y Dx = √ X 2 + Y 2 D X , Given that Y = 0 When X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.

बेरीज

उत्तर

xdy - ydx = `sqrt(x^2 + y^2)dx`

⇒ xdy = `[ y + sqrt(x^2+y^2)]dx`

`dy/dx = (y + sqrt(x^2+y^2))/x`       ...(1)

Let F (x,y) = `(y + sqrt(x^2+y^2))/x` 

∴ `"F"(lambdax,lambday) = (lambdax+sqrt((lambdax)^2+ (lambday)^2))/(lambdax) = (y + sqrt(x^2+y^2))/(x) = lambda^0 . "F"(x,y)`

Therefore, the given differential equation is a homogeneous equation.To solve it, we make the substitution as:

y = vx

⇒ `d/dx (y) = d/dx (vx)`
⇒ `dy/dx = v + x (dv)/(dx)`

Substituting the values of v and `dy/dx` in equation (1), we get:

`v + x (dv)/dx = (vx+sqrt(x^2 + (vx)^2))/x`

⇒ `v + x (dv)/dx = v + sqrt(1+v^2)`

⇒ `(dv)/sqrt(1+v^2) = dx/x`

Integrating both sides, we get:

`log |v + sqrt(1+v^2)| = log|x| + log "C"`

⇒ `log |y/x + sqrt(1+y^2/x^2)| = log|"C"x|`

⇒ `log|(y + sqrt(x^2+y^2))/x| = log|"C"x|`

⇒ `y + sqrt(x^2+y^2) = "C"x^2`

This is the required solution of the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/1/1

संबंधित प्रश्‍न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×