मराठी

Solve : dydxx2dydx = x2 + xy + y2. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.

बेरीज

उत्तर

Given equation is `x^2 "dy"/"dx"` = x2 + xy + y2 

⇒ `"dy"/"dx" = (x^2 + xy + y^2)/x^2`

Put y = vx  ......[∵ it is a homogeneous differential equation]

∴ `"dy"/"dx" = "v" + x * "dv"/"dx"`

∴ `"v" + x * "dv"/"dx" = (x^2 + "v"x^2 + "v"^2x^2)/x^2`

⇒ `"v" + x * "dv"/"dx" = (x^2(1 + "v" + v"^2))/x^2` 

⇒ `"v" + x * "dv"/"dx" = 1 + "v" + "v"^2`

⇒ `x * "dv"/"dx" = 1 + "v" + "v"^2 -  "v"`

⇒ `x * "dv"/"dx" = 1 + "v"^2`

⇒ `"dv"/(1 + "v"^2) = "dx"/x`

Integrating both sides, we get

`int "dv"/(1 + "v"^2) = int "dx"/x`

⇒ tan–1v = log x + c

⇒ `tan^-1 (y/x)` = log x + c

Hence, the required solution is `tan^-1 (y/x)` = log |x| + c.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 16 | पृष्ठ १९४

संबंधित प्रश्‍न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Which of the following is a homogeneous differential equation?


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×