मराठी

Show that the differential equation 2y^(x/y) dx + (y − 2x e^(x/y)) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.

उत्तर

The given differential equation can be written as

`dx/dy=(2xe^(x/y)-y)/(2ye^(x/y)) .....................(1)`

`Let F(x,y)=(2xe^(x/y)-y)/(2ye^(x/y))`

then ` F(lambdax,lambday)=(lambda(2xe^(x/y)-y))/(lambda(2ye^(x/y)))=lambda^@[F(x,y)]`

Thus, F (x, y) is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation.

For solving, let us substitute x=vy     ..................(2)

Differentiating equation (2) with respect to y, we get

`dx/dy=v+y(dv)/(dy)`

Substituting the value of x and  `dx/dy ` in equation (1), we get

`v+y(dv)/(dy)=(2ve^v-1)/(2e^v)`

`or y(dv)/(dy)=(2ve^v-1)/(2e^v)-v`

`or y(dv)/(dy)=-1/(2e^v)`

`or 2e^vdv=(-dy)/y`

`or int 2e^vdv=-intdy/y`

`or 2e^v=-log|y|+C`

Replacing v by x/y , we get

`2e^(x/y)+log|y|=c......(3)`

Substituting x = 0 and y = 1in equation (3), we get

`2e^0+log|1|=c =>c=2`

Substituting the value of C in equation (3), we get

`2e^(x/y)+log|y|=2` .which is the particular solution of the given differential equation.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (March) Delhi Set 1

संबंधित प्रश्‍न

Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×