English

Read the following passage: An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. - Mathematics

Advertisements
Advertisements

Question

Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)
Sum

Solution

I. (x2 – y2) dx + 2xy dy = 0

`dy/dx = (y^2 - x^2)/(2xy)`

= `(x^2(y^2/x^2 - 1))/(x^2(2 y/x))`

= `g(y/x)`

II. Let y = vx

`dy/dx = v + x (dv)/dx`

 `v + x (dv)/dx = (v^2x^2 - x^2)/(2vx^2)`

= `(v^2 - 1)/(2v)`

`x (dv)/dx = (v^2 - 1)/(2v) - v`

= `(v^2 - 1 - 2v^2)/(2v)`

= `-((1 + v^2))/(2v)`

`-int (2v)/(1 + v^2) dv = int dx/x`

`- log |1 + v^2| - log |x| + C` = 0

`- log |1 + y^2/x^2| - log |x| + C` = 0

`-log |(x^2 + y^2)/x^2| - log |x| + C` = 0

`- log |(x^2 + y^2)/x| + C` = 0

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 1

RELATED QUESTIONS

 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Which of the following is a homogeneous differential equation?


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×