English

State the type of the differential equation for the equation. xdy – ydx = dx2+y2 dx and solve it - Mathematics

Advertisements
Advertisements

Question

State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it

Sum

Solution

Given equation can be written as xdy = `(sqrt(x^2 + y^2) + y) "d"x`

i.e., `"dy"/"dx" = (sqrt(x^2 + y^2) + y)/x`  ......(1)

Clearly R.H.S of (1) is a homogeneous function of degree zero.

Therefore, the given equation is a homogeneous differential equation.

Substituting y = vx, we get from (1)

`"v" + x "dv"/"dx" = (sqrt(x^2 + "v"^2 + x^2) + vx)/x`

i.e. `"v" + x "dv"/"dx" = sqrt(1 + "v"^2) + "v"`

`x "dv"/"dx" = sqrt(1 + "v"^2)`

⇒ `"dv"/sqrt(1 + "v"^2) = "dx"/x`  ......(2)

Integrating both sides of (2), we get

`log("v" + sqrt(1 + "v"^2))` = logx + logc

⇒ `"v" + sqrt(1 + "v"^2)` = cx

⇒ `y/x + sqrt(1 + y^2/x^2)` = cx

⇒ `y + sqrt(x^2 + y^2)` = cx2

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Solved Examples [Page 186]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Solved Examples | Q 11 | Page 186

RELATED QUESTIONS

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×