Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
उत्तर
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
This is an homogenous equation, put y= vx
\[\left( v^4 x^4 - 2v x^4 \right) + \left( x^4 - 2 v^3 x^4 \right) \left[ v + x\frac{dv}{dx} \right] = 0\]
\[\left( v^4 x^4 - 2v x^4 \right) = \left( 2 v^3 x^4 - x^4 \right) \left[ v + x\frac{dv}{dx} \right]\]
\[v x^4 \left( v^3 - 2 \right) = x^4 \left( 2 v^3 - 1 \right) \left[ v + x\frac{dv}{dx} \right]\]
\[v\left( v^3 - 2 \right) = \left( 2 v^3 - 1 \right)v + x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left[ v^3 - 2 - 2 v^3 + 1 \right] = x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left( - 1 - v^3 \right) = x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left( 1 + v^3 \right) = x\left( 1 - 2 v^3 \right)\frac{dv}{dx}\]
\[\frac{dx}{x} = \frac{\left( 1 - 2 v^3 \right)}{v\left( 1 + v^3 \right)}dv\]
On integrating both side of the equation we get,
\[\int\frac{dx}{x} = \int\frac{\left( 1 - 2 v^3 \right)}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1 + v^3 - 3 v^3}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1 + v^3}{v\left( 1 + v^3 \right)}dv - \int\frac{3v}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1}{v}dv - \int\frac{3 v^2}{\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \log_e v - \int\frac{dt}{t}\]
\[ \Rightarrow \log_e x = \log_e v - \log_e \left( 1 + v^3 \right) + c.......\text{ let }\left( 1 + v^3 \right) = t, 3 v^2 dv = dt\]
\[ \Rightarrow \log_e x = \log_e \frac{v}{1 + v^3} + c\]
As `v = y/x`
\[ \Rightarrow \log_e x = \log_e \frac{\frac{y}{x}}{1 + y^\frac{3}{x}} + c\]
\[ \Rightarrow \log_e x = \log_e \frac{y x^2}{x^3 + y^3} + c\]
As y(1) = 1
\[ \Rightarrow \log_e 1 = \log_e \frac{1}{1 + 1} + c\]
\[ \Rightarrow 0 = \log_e \frac{1}{2} + c\]
\[c = - \log_e \frac{1}{2}\]
\[ \Rightarrow c = \log_e 2\]
\[ \therefore \log_e x = \log_e \frac{y x^2}{x^3 + y^3} + \log_e 2\]
APPEARS IN
संबंधित प्रश्न
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)