Advertisements
Advertisements
प्रश्न
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
उत्तर
Given that: `x ("d"y)/("d"x) = y(log y – log x + 1)`
⇒ `x ("d"y)/("d"x) = y[log(y/x) + 1]`
⇒ `("d"y)/("d"x) = y/x[log(y/x) + 1]`
Since, it is a homogeneous differential equation.
∴ Put y = vx
⇒ `("d"y)/("d"x) = "v" + x * "dv"/"dx"`
∴ `"v" + x * "dv"/"dx" = "vx"/x[log("vx"/x) + 1]`
⇒ `"v" + x * "dv"/"dx" = "v"[log "v" + 1]`
⇒ `x * "dv"/"dx" = "v"[log "v" + 1] - "v"`
⇒ `x * "dv"/"dx"` = v ....[log v + 1 – 1]
⇒ `x * "dv"/"dx" = "v" * log "v"`
⇒ `"dv"/("v"log"v") = "dx"/x`
Integrating both sides, we get
`int "dv"/("v"log"v") = int "dx"/x`
Put log v = t on L.H.S.
`1/"v" "dv"` = dt
∴ `int "dt"/"t" = int "dx"/x`
`log|"t"| = log|x| + log"c"`
⇒ `log|log "v"| = log x"c"`
⇒ log v = xc
⇒ `log(y/x)` = xc
Hence, the required solution is `log(y/x)` = xc.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)