हिंदी

Solve the Differential Equation - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`

उत्तर

`y+x dy/dx=x−y dy/dx`

`x dy/dx + y dy/dx=x−y`

`⇒dy/dx=(x−y)/(x+y)  `  ......(1)

`Let F(x, y) =(x−y)/(x+y)`

`F(λx, λy) = λF(x, y)`
Therefore, F(x, y) is a homogeneous function of degree zero.

Let `y=vx`

`dy/dx=v+x (dv)/dx`


Substituting the value of y and dy/dx in (1) we get,

`v + x (dv)/dx=(x−vx)/(x+vx)=(1−v)/(1+v)`

`x (dv)/dx=(1−v)/(1+v)−v=(1−v−v^2−v)/(1+v)=(1−2v−v^2)/(1+v)`

`(1+v)/(v^2+2v−1)dv=−dx/x`

Integrating both sides, we have

`1/2 log∣(y^2/x^2)+(2y)/x−1∣+log|x|=logc`

`⇒log∣(y^2/x^2)+(2y)/x−1∣+2log|x|=2logc`

`⇒log((y^2/x^2)+(2y)/x−1)(x^2)=logc^2`

`⇒((y^2+2yx−x^2)/x^2)(x^2) = c^2`

`⇒y^2+2yx−x^2=C           (where C=c^2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 2 C

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×