Advertisements
Advertisements
प्रश्न
उत्तर
\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\sqrt{y^2 - x^2} + y}{x}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{2\sqrt{v^2 x^2 - x^2} + vx}{x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 2\sqrt{v^2 - 1} + v\]
\[ \Rightarrow x\frac{dv}{dx} = 2\sqrt{v^2 - 1} + v - v\]
\[ \Rightarrow x\frac{dv}{dx} = 2\sqrt{v^2 - 1}\]
\[ \Rightarrow \frac{1}{2\sqrt{v^2 - 1}}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{2\sqrt{v^2 - 1}}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{\sqrt{v^2 - 1}}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v + \sqrt{v^2 - 1} \right| = 2 \log \left| x \right| + \log C\]
\[ \Rightarrow v + \sqrt{v^2 - 1} = C x^2 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \therefore \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1} = C x^2 \]
\[ \Rightarrow y + \sqrt{y^2 - x^2} = C x^3 \]
\[\text{ Hence, }y + \sqrt{y^2 - x^2} = C x^3\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
Which of the following is not a homogeneous function of x and y.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)