हिंदी

X D Y D X − Y = 2 √ Y 2 − X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

उत्तर

We have,
\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\sqrt{y^2 - x^2} + y}{x}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{2\sqrt{v^2 x^2 - x^2} + vx}{x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 2\sqrt{v^2 - 1} + v\]
\[ \Rightarrow x\frac{dv}{dx} = 2\sqrt{v^2 - 1} + v - v\]
\[ \Rightarrow x\frac{dv}{dx} = 2\sqrt{v^2 - 1}\]
\[ \Rightarrow \frac{1}{2\sqrt{v^2 - 1}}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{2\sqrt{v^2 - 1}}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{\sqrt{v^2 - 1}}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v + \sqrt{v^2 - 1} \right| = 2 \log \left| x \right| + \log C\]
\[ \Rightarrow v + \sqrt{v^2 - 1} = C x^2 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \therefore \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1} = C x^2 \]
\[ \Rightarrow y + \sqrt{y^2 - x^2} = C x^3 \]
\[\text{ Hence, }y + \sqrt{y^2 - x^2} = C x^3\text{ is the required solution }.\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 29 | पृष्ठ ८३

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


Which of the following is not a homogeneous function of x and y.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×