Advertisements
Advertisements
प्रश्न
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
उत्तर
We have,
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
\[\Rightarrow \frac{dx}{dy} = \frac{e^{- \tan^{- 1} y} - x}{1 + y^2}\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get}\]
\[P = \frac{1}{1 + y^2} \]
\[Q = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[Now, \]
\[I . F . = e^{\int\frac{1}{1 + y^2}dy} = e^{\tan^{- 1} y} \]
So, the solution is given by
\[x \times e^{\tan^{- 1} y} = \int\frac{e^{- \tan^{- 1} y}}{1 + y^2} \times e^{\tan^{- 1} y} dy + C\]
\[ \Rightarrow x \times e^{\tan^{- 1} y} = \int\frac{1}{1 + y^2} dy + C\]
\[ \Rightarrow x e^{\tan^{- 1} y} = \tan^{- 1} y + C\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
(x3 − 2y3) dx + 3x2 y dy = 0
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.