हिंदी

Solve the Following Differential Equation:- D Y D X − Y = Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]

योग

उत्तर

We have,

\[\frac{dy}{dx} - y = \cos x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = - 1 \]

\[Q = \cos x\]

Now,

\[ I . F . = e^{- 1\int dx} = e^{- x} \]

Solution is given by,

\[y \times I . F . = \int\cos x \times I . F . dx + C\]

\[ \Rightarrow y e^{- x} = \int e^{- x} \cos x dx + C\]

\[ \Rightarrow y e^{- x} = I + C . . . . . \left( 1 \right)\]

Where,

\[ \Rightarrow I = \cos x\int e^{- x} dx - \int\left[ \frac{d}{dx}\left( \cos x \right)\int e^{- x} dx \right]dx\]

\[ \Rightarrow I = - \cos x e^{- x} - \int\sin x e^{- x} dx\]

\[ \Rightarrow I = - \cos x e^{- x} - \sin x\int e^{- x} dx + \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^{- x} dx \right]dx\]

\[ \Rightarrow I = - \cos x e^{- x} + \sin x e^{- x} - \int\left[ \cos x e^{- x} \right]dx\]

\[ \Rightarrow I = - \cos x e^{- x} + \sin x e^{- x} - I ..........\left[\text{Using (2)} \right]\]

\[ \Rightarrow 2I = - \cos x e^{- x} + \sin x e^{- x} \]

\[ \Rightarrow I = \frac{1}{2}\left( - \cos x + \sin x \right) e^{- x} . . . . . . . . \left( 3 \right)\]

From (1) and (3), we get

\[ \therefore y e^{- x} = \left( \sin x - \cos x \right) e^{- x} + C\]

\[ \Rightarrow y = \frac{1}{2}\left( \sin x - \cos x \right) + C e^x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 66.04 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


If y = etan x+ (log x)tan x then find dy/dx


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


\[\frac{dy}{dx} - y \tan x = e^x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×