हिंदी

Solve the Following Differential Equation:- X D Y D X + 2 Y = X 2 , X ≠ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]

योग

उत्तर

We have,

\[x\frac{dy}{dx} + 2y = x^2 \]

\[ \Rightarrow \frac{dy}{dx} + \frac{2}{x}y = x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \frac{2}{x} \]

\[Q = x\]

Now,

\[I . F . = e^{2\int\frac{1}{x}dx} \]

\[ = e^{2\log \left| x \right|} \]

\[ = x^2 \]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow y x^2 = \int x^3 dx + C\]

\[ \Rightarrow y x^2 = \frac{x^4}{4} + C\]

\[ \Rightarrow y = \frac{x^2}{4} + C x^{- 2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 66.05 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Solve the differential equation `dy/dx -y =e^x`


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


If y = etan x+ (log x)tan x then find dy/dx


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} + 1 = e^{x + y}\]


(x + y − 1) dy = (x + y) dx


(1 + y + x2 y) dx + (x + x3) dy = 0


(x2 + 1) dy + (2y − 1) dx = 0


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×