हिंदी

The Solution of the Differential Equation D Y D X = 1 + X + Y 2 + X Y 2 , Y ( 0 ) = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is

विकल्प

  • \[y^2 = \exp\left( x + \frac{x^2}{2} \right) - 1\]

  • \[y^2 = 1 + C \exp\left( x + \frac{x^2}{2} \right)\]

  • y = tan (C + x + x2)

  • \[y = \tan\left( x + \frac{x^2}{2} \right)\]

MCQ

उत्तर

\[y = \tan\left( x + \frac{x^2}{2} \right)\]
 
We have,
\[\frac{dy}{dx} = 1 + x + y^2 + x y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \left( x + 1 \right) + y^2 \left( x + 1 \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( x + 1 \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{\left( 1 + y^2 \right)} = \left( x + 1 \right)dx\]
Integrating both sides, we get
\[\int\frac{dy}{\left( 1 + y^2 \right)} = \int\left( x + 1 \right)dx\]
\[ \Rightarrow \tan^{- 1} y = \frac{x^2}{2} + x + C . . . . . \left( 1 \right)\]
Now,
\[y\left( 0 \right) = 0\]
\[ \therefore \tan^{- 1} 0 = \frac{0}{2} + 0 + C\]
\[ \Rightarrow C = 0\]
\[\text{Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[ \tan^{- 1} y = \frac{x^2}{2} + x\]
\[ \Rightarrow y = \tan\left( \frac{x^2}{2} + x \right)\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 16 | पृष्ठ १४०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


(x2 + 1) dy + (2y − 1) dx = 0


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the differential equation of all non-horizontal lines in a plane.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×