Advertisements
Advertisements
प्रश्न
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
विकल्प
(y + 1) = k(ex + 1)
y + 1 = ex + 1 + k
y = log {k(y + 1)(ex + 1)}
y = `log{("e"^x + 1)/(y + 1)} + "k"`
उत्तर
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is y = log {k(y + 1)(ex + 1)}.
Explanation:
The given differential equation is (ex + 1) ydy = (y + 1) exdx
⇒ `y/(y + 1) "d"y = "e"^x/("e"^x + 1) "d"x`
Integrating both sides, we get
`int y/(y + 1) "d"y = int "e"^x/("e"^x + 1)"d"x`
⇒ `int (y + 1 - 1)/(y + 1) "d"y = int "e"^x/("e"^x + 1) "d"x`
⇒ `int 1. "d"y - int 1/(y + 1) "d"y = int "e"^x/("e"^x + 1) "d"x`
⇒ `y - log|y + 1| = log|"e"^x + 1| + log"k"`
⇒ y = `log|y + 1| + log|"e"^x + 1| + log "k"`
⇒ y = `log|"k"(y + 1)("e"^x + 1)|`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x3 − 2y3) dx + 3x2 y dy = 0
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Find the differential equation of all non-horizontal lines in a plane.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.