Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
उत्तर
We have:
`e^xsqrt(1−y2)dx+y/x dy=0 `
`e^xsqrt(1−y2)dx=-y/x dy..........(1)`
Separating the variables in equation (1), we get:
`xe^xdx=-y/sqrt(1-y^2)dy.........(2)`
Integrating both sides of equation (2), we have:
`int xe^xdx=-inty/sqrt(1-y^2)dy ............(3)`
`Now,intxe^xdx=xe^x-e^x+C_1=e^x(x-1)+C_1.......(4)`
`"Let " I=-inty/sqrt(1-y^2)dy`
putting `1-y^2=t` we get,
`-2ydy=dt`
`-ydy=dt/2`
`I=1/2intdt/sqrtt`
`=1/2xx2t^(1/2)+C_2`
`=t^(1/2)+C_2`
`=(1-y^2)^(1/2)+C2.......(5)`
Putting the values in equation (3), we get
`e^x(x-1)+C_1=(1-y^2)^(1/2)+C_2`
`e^x(x-1)=(1-y^2)^(1/2)+C, "where " C=C_2-C_1.......(6)`
on putting y=1 and x=0 in equation (6) we get C=-1
The particular solution of the given differential equation is `e^x(x-1)=(1-y^2)-1`
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solution of differential equation xdy – ydx = 0 represents : ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of differential equation coty dx = xdy is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.