Advertisements
Advertisements
प्रश्न
Solve the differential equation `cos^2 x dy/dx` + y = tan x
उत्तर
`cos^2 x dy/dx` + y = tan x
∴ `dy/dx + y/(cos^2x) = tanx/(cos^2x)`
∴ `dy/dx + sec^2x.y` = tan x . sec2 x
The given equation is of the form
`dy/dx + Py` = Q,
Where P = sec2 x and Q = tan x. sec2 x
∴ I.F. = `e^(int Pdx) = e^(intsec^2x dx)` = etan x
∴ Solution of the given equation is
y(I.F.) = `int Q.(I.F.)dx + c`
∴ yetan x = `int tan x.sec^2x.e^(tanx)dx+ c`
Put tan x = t
∴ sec2x dx = dt
∴ yetan x = `int te^t dt + c`
= `tint e^t dt - int[d/dt (t) inte^tdt]dt + c`
= `te^t - int e^tdt + c`
= tet – et + c
∴ yetan x = etanx (tanx – 1) + c
∴ y = tan x – 1 + c.e–tanx
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
cos (x + y) dy = dx
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
(x2 + 1) dy + (2y − 1) dx = 0
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Find the differential equation of all non-horizontal lines in a plane.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of differential equation coty dx = xdy is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.