हिंदी

(X2 + 1) Dy + (2y − 1) Dx = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(x2 + 1) dy + (2y − 1) dx = 0

योग

उत्तर

We have,

\[\left( 1 + x^2 \right)dy + \left( 2y - 1 \right)dx = 0\]

\[ \Rightarrow \left( 1 + x^2 \right)dy = \left( 1 - 2y \right)dx\]

\[ \Rightarrow \frac{dy}{\left( 1 - 2y \right)} = \frac{1}{\left( 1 + x^2 \right)}dx\]

Integrating both sides, we get

\[\int\frac{1}{\left( 1 - 2y \right)}dy = \int\frac{1}{\left( 1 + x^2 \right)}dx\]

\[ \Rightarrow - \frac{1}{2}\log\left| 1 - 2y \right| = \tan^{- 1} x - \log \sqrt{C}\]

\[ \Rightarrow - \log\left| 1 - 2y \right| = 2 \tan^{- 1} x - 2\log \sqrt{C}\]

\[ \Rightarrow - 2 \tan^{- 1} x = - \log C + \log\left| 1 - 2y \right|\]

\[ \Rightarrow - 2 \tan^{- 1} x = \log \left| \frac{1 - 2y}{C} \right|\]

\[ \Rightarrow e^{- 2 \tan^{- 1} x} = \frac{1 - 2y}{C}\]

\[ \Rightarrow C e^{- 2 \tan^{- 1} x} = \left( 1 - 2y \right)\]

\[ \Rightarrow 1 - C e^{- 2 \tan^{- 1} x} = 2y\]

\[ \Rightarrow \frac{1}{2} - \frac{C}{2} e^{- 2 \tan^{- 1} x} = y\]

\[ \Rightarrow y = \frac{1}{2} + K e^{- 2 \tan^{- 1} x},\text{ where }K = - \frac{C}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 45 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} = \left( x + y \right)^2\]


cos (x + y) dy = dx


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[\frac{dy}{dx} + 5y = \cos 4x\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Find the differential equation of all non-horizontal lines in a plane.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Solution of differential equation xdy – ydx = 0 represents : ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×