Advertisements
Advertisements
प्रश्न
(x2 + 1) dy + (2y − 1) dx = 0
उत्तर
We have,
\[\left( 1 + x^2 \right)dy + \left( 2y - 1 \right)dx = 0\]
\[ \Rightarrow \left( 1 + x^2 \right)dy = \left( 1 - 2y \right)dx\]
\[ \Rightarrow \frac{dy}{\left( 1 - 2y \right)} = \frac{1}{\left( 1 + x^2 \right)}dx\]
Integrating both sides, we get
\[\int\frac{1}{\left( 1 - 2y \right)}dy = \int\frac{1}{\left( 1 + x^2 \right)}dx\]
\[ \Rightarrow - \frac{1}{2}\log\left| 1 - 2y \right| = \tan^{- 1} x - \log \sqrt{C}\]
\[ \Rightarrow - \log\left| 1 - 2y \right| = 2 \tan^{- 1} x - 2\log \sqrt{C}\]
\[ \Rightarrow - 2 \tan^{- 1} x = - \log C + \log\left| 1 - 2y \right|\]
\[ \Rightarrow - 2 \tan^{- 1} x = \log \left| \frac{1 - 2y}{C} \right|\]
\[ \Rightarrow e^{- 2 \tan^{- 1} x} = \frac{1 - 2y}{C}\]
\[ \Rightarrow C e^{- 2 \tan^{- 1} x} = \left( 1 - 2y \right)\]
\[ \Rightarrow 1 - C e^{- 2 \tan^{- 1} x} = 2y\]
\[ \Rightarrow \frac{1}{2} - \frac{C}{2} e^{- 2 \tan^{- 1} x} = y\]
\[ \Rightarrow y = \frac{1}{2} + K e^{- 2 \tan^{- 1} x},\text{ where }K = - \frac{C}{2}\]
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} = \left( x + y \right)^2\]
cos (x + y) dy = dx
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\frac{dy}{dx} + 5y = \cos 4x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the differential equation of all non-horizontal lines in a plane.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Solution of differential equation xdy – ydx = 0 represents : ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.