हिंदी

D Y D X + 5 Y = Cos 4 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} + 5y = \cos 4x\]

योग

उत्तर

We have,

\[\frac{dy}{dx} + 5y = \cos 4x . . . . . \left( 1 \right)\]

Clearly, it is a linear differential equation of the form

\[\frac{dy}{dx} + Py = Q\]

\[\text{where }P = 15\text{ and }Q = \cos 4x\]

\[ \therefore I . F . = e^{\int P\ dx }\]

\[ = e^{\int 5dx} \]

\[ = e^{5x} \]

\[\text{Multiplying both sides of (1) by }I.F. = e^{5x},\text{ we get}\]

\[e^{5x} \left( \frac{dy}{dx} + 5y \right) = e^{5x} \cos 4x \]

\[\Rightarrow e^{5x} \frac{dy}{dx} + 5 e^{5x} y = e^{5x} \cos 4x\]

Integrating both sides with respect to `x`, we get

\[y e^{5x} = \int e^{5x} \cos 4x dx + C\]

\[ \Rightarrow y e^{5x} = I + C . . . . . \left( 2 \right)\]

Where,

\[I = \int e^{5x} \cos 4x dx . . . . . \left( 3 \right)\]

\[ \Rightarrow I = e^{5x} \int\cos 4x dx - \int\left[ \frac{d e^{5x}}{dx}\int\cos 4x dx \right]dx\]

\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\int e^{5x} \sin 4x dx\]

\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\left[ e^{5x} \int\sin 4x dx - \int\left( \frac{d e^{5x}}{dx}\int\sin 4x dx \right)dx \right]\]

\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\left[ - \frac{e^{5x} \cos 4x}{4} + \frac{5}{4}\int e^{5x} \cos 4x dx \right]\]

\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16} - \frac{25}{16}\int e^{5x} \cos 4x dx\]

\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16} - \frac{25}{16}I ............\left[\text{From (3)} \right]\]

\[ \Rightarrow \frac{41}{16}I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16}\]

\[ \Rightarrow \frac{41}{16}I = \frac{e^{5x}}{16}\left( 4\sin 4x + 5\cos 4x \right)\]

\[ \Rightarrow I = \frac{e^{5x}}{41}\left( 4\sin 4x + 5\cos 4x \right) . . . . . . . . \left( 4 \right)\]

From (2) and (4) we get

\[ \Rightarrow y e^{5x} = \frac{e^{5x}}{41}\left( 4\sin 4x + 5\cos 4x \right) + C\]

\[ \Rightarrow y = \frac{4}{41}\left( \sin 4x + \frac{5}{4}\cos 4x \right) + C e^{- 5x} \]

\[\text{Hence, }y = \frac{4}{41}\left(\sin 4x + \frac{5}{4}\cos 4x \right) + C e^{- 5x}\text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 53 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + y = 4x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of differential equation coty dx = xdy is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×