Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
विकल्प
\[\tan^{- 1} \left( \frac{x}{y} \right) = \log y + C\]
\[\tan^{- 1} \left( \frac{y}{x} \right) = \log x + C\]
\[\tan^{- 1} \left( \frac{x}{y} \right) = \log x + C\]
\[\tan^{- 1} \left( \frac{y}{x} \right) = \log y + C\]
उत्तर
This is homogenous differential equation.
\[\text{ Let }y = vx\]
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ Now, putting }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ and }y = vx\text{ in }\left( 1 \right),\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + x^2 v + x^2 v^2}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 1 + v + v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = 1 + v^2 \]
\[ \Rightarrow \left( \frac{1}{1 + v^2} \right)dv = \frac{1}{x}dx\]
Integrating both sides we get,
\[\int\frac{1}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v = \log x + C\]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \log x + C\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
x2 dy + (x2 − xy + y2) dx = 0
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.