Advertisements
Advertisements
प्रश्न
x2 dy + (x2 − xy + y2) dx = 0
उत्तर
We have,
\[ x^2 dy + \left( x^2 - xy + y^2 \right)dy = 0\]
\[ \Rightarrow x^2 dy = \left( xy - x^2 - y^2 \right)dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{xy - x^2 - y^2}{x^2}\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = \frac{x^2 v - x^2 - x^2 v^2}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = v - 1 - v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = - 1 - v^2 \]
\[ \Rightarrow \frac{dv}{1 + v^2} = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{dv}{1 + v^2}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v = - \log \left| x \right| + \log C\]
\[ \Rightarrow \tan^{- 1} \frac{y}{x} = \log\frac{C}{x}\]
\[ \Rightarrow e^{\tan^{- 1} \frac{y}{x}} = \frac{C}{x}\]
\[ \Rightarrow C = x e^{\tan^{- 1} \frac{y}{x}}\]
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Which of the following differential equations has `y = x` as one of its particular solution?
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.