Advertisements
Advertisements
प्रश्न
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
उत्तर
We have,
\[\frac{dy}{dx} = \frac{2x}{y^2}\]
\[ \Rightarrow y^2 dy = 2x dx\]
Integrating both sides, we get
\[\int y^2 dy = 2\int x dx\]
\[ \Rightarrow \frac{y^3}{3} = x^2 + C . . . . . \left( 1 \right)\]
Now the given curve passes theough (- 2, 3)
Therefore, when x = - 2, y = 3
Substituting x = - 2 and y = 3 in (1) we get
\[\frac{3^3}{3} = \left( - 2 \right)^2 + C\]
\[ \Rightarrow 9 = 4 + C\]
\[ \Rightarrow C = 5\]
Putting the value of `C` in (1), we get
\[\frac{y^3}{3} = x^2 + 5\]
\[ \Rightarrow y^3 = 3 x^2 + 15\]
\[ \Rightarrow y = \left( 3 x^2 + 15 \right)^\frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.