हिंदी

Find the Equation of a Curve Passing Through the Point (−2, 3), Given that the Slope of the Tangent to the Curve at Any Point (X, Y) is 2 X Y 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`

योग

उत्तर

We have,

\[\frac{dy}{dx} = \frac{2x}{y^2}\]

\[ \Rightarrow y^2 dy = 2x dx\]

Integrating both sides, we get

\[\int y^2 dy = 2\int x dx\]

\[ \Rightarrow \frac{y^3}{3} = x^2 + C . . . . . \left( 1 \right)\]

Now the given curve passes theough (- 2, 3)

Therefore, when x = - 2, y = 3 

Substituting x = - 2 and y = 3 in (1) we get

\[\frac{3^3}{3} = \left( - 2 \right)^2 + C\]

\[ \Rightarrow 9 = 4 + C\]

\[ \Rightarrow C = 5\]

Putting the value of `C` in (1), we get

\[\frac{y^3}{3} = x^2 + 5\]

\[ \Rightarrow y^3 = 3 x^2 + 15\]

\[ \Rightarrow y = \left( 3 x^2 + 15 \right)^\frac{1}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 69 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×