Advertisements
Advertisements
प्रश्न
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
उत्तर
Given equation is `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx
⇒ `((2 + sin y)/(cos x))"dy"/"dx"` = –(1 + y)
⇒ `"dy"/((1 + y)) = -((cosx)/(2 + sinx))"d"x`
Integrating both sides, we get
`int "dy"/(1 + y) = - int cosx/(2 + sinx) "d"x`
⇒ `log|1 + y| = - log|2 + sinx| + logc`
⇒ `log|1 + y| + log|2 + sinx|` = log c
⇒ `log(1 + y)(2 + sinx)` = log c
⇒ `(1 + y)(2 + sinx)` = c
Put x = 0 and y = 1, we get
(1 + 1)(2 + sin 0) = c
⇒ 4 = c
∴ Equation is (1 + y)(2 + sinx) = 4
Now put x = `pi/2`
∴ `(1 + y)(2 + sin pi/2)` = 4
⇒ (1 + y)(2 + 1) = 4
⇒ 1 + y = `4/3`
⇒ y = `4/3 - 1`
⇒ `1/3`
So, `y(pi/2) = 1/3`
Hence, the required solution is `y(pi/2) = 1/3`.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} + 1 = e^{x + y}\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of differential equation coty dx = xdy is ______.