हिंदी

General solution of the differential equation of the type ddPQdxdx+P1x=Q1 is given by ______. - Mathematics

Advertisements
Advertisements

प्रश्न

General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.

रिक्त स्थान भरें

उत्तर

General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by `x"e"^(intPdx) = int "Q"_1"e"^(int P_1"d"y) "d"y + "C"`.

Explanation:

We have `("d"x)/("d"x) + "P"_1x = "Q"_1`

For solving such equation we multiply both sides by 

Integrating factor = I.F. = `"e"^(int Pdx)`

So we get `"e"^(intPdx) (("d"x)/("d"y) + "P"_1x) = "Q"_1"e"^(intPdx)`

⇒ `("d"x)/("d"y) "e"^(intPdx) + "P"_1"e"^(intPdy) = "Q"_1"e"^(intP_1dy)`

⇒ `"d"/("d"y)(x"e"^(intP_1dy)) = "Q"_1"e"^(intP_1dy)`

⇒ `int "d"/("d"y) (x"e"^(intP_1dy))"d"y = int "Q"_1"e"^(intP_1dy) "d"y`

⇒ `x"e"^(intP_1"d"y) = int"Q"_1"e"^(intP_1dy) "d"y + "C"`

This is the required solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 76.(v) | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + y = 4x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×