Advertisements
Advertisements
प्रश्न
General solution of `("d"y)/("d"x) + y` = sinx is ______.
उत्तर
General solution of `("d"y)/("d"x) + y` = sinx is y = `((sinx - cosx)/2) + "c"."e"^-x`.
Explanation:
The given differential equation is `("d"y)/("d"x) + y` = sinx
Since, it it a linear differential equation
∴ P = 1 and Q = sinx
Integrating factor I.F. = `"e"^(intPdx)`
= `"e"^(int1."d"x)`
= ex
∴ Solution is `y xx "i"."F". = int "Q" xx "I"."F". "D"x + "C"`
⇒ `y . "e"^x = int sin x . "e"6x "d"x + "c"` ....(1)
Let I = `int sin_"I"x . "e"_"II"^x "d"x`
I = `sin x . int "e"^x "d"x - int ("D"(sinx) . int"e"^x "d"x)"d"x`
I = `sinx . "e"^x - int cos_"I"x . "e"_"II"^x "d"x`
I = `sinx . "e"^x - [cosx . int "e"^x "d"x - int ("D"(cosx) int"e"^x "d"x)"d"x]`
I = `sin x . "e"6x - [cosx . "e"^x - int - sin x . "e"^x "d"x]`
I = `sin x . "e"^x - cos x . "e"^x - int sin x . "e"^x "d"x`
I = `sin x . "e"^x - cos x . "e"^x - "I"`
⇒ I + I = `"e"^x (sin x - cos x)`
⇒ 2I = `"e"^x (sinx - cosx)`
∴ I = `"e"^x/2 (sinx - cosx)`
From equation (1) we get
`y . "e"^x = "e"^x/2 (sinx - cosx) + "c"`
y = `((sinx - cosx)/2) + "c" . "e"^-x`
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + 1 = e^{x + y}\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.