Advertisements
Advertisements
प्रश्न
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
उत्तर
We have,
`2 cos x(dy)/(dx)+4y sin x = sin 2x`
\[\Rightarrow \frac{dy}{dx} + 4y\frac{\sin x}{2 \cos x} = \frac{2\sin x \cos x}{2 \cos x}\]
\[ \Rightarrow \frac{dy}{dx} + 2y \tan x = \sin x\]
\[\text{Comparing with} \frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = 2\tan x\]
\[Q = \sin x\]
Now,
\[I . F . = e^{2\int\tan x dx} \]
\[ = e^{2\log\left( sec x \right)} \]
\[ = \sec^2 x\]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y \sec^2 x = \int\sin x \sec^2 x dx + C\]
\[ \Rightarrow y \sec^2 x = \int\tan x \sec x dx + C\]
\[ \Rightarrow y \sec^2 x = \sec x + C\]
\[ \Rightarrow y = \cos x + C \cos^2 x . . . . . \left( 1 \right)\]
Now,
\[\text{When }x = \frac{\pi}{3}, y = 0 \]
\[ \therefore 0 = \cos \frac{\pi}{3} + C \cos^2 \frac{\pi}{3}\]
\[ \Rightarrow 0 = \frac{1}{2} + C\frac{1}{4}\]
\[ \Rightarrow C = - 2\]
Putting the value of C in (1), we get
\[y = \cos x - 2 \cos^2 x\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
How many arbitrary constants are there in the general solution of the differential equation of order 3.
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
(x3 − 2y3) dx + 3x2 y dy = 0
x2 dy + (x2 − xy + y2) dx = 0
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.