Advertisements
Advertisements
प्रश्न
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
उत्तर
We have,
\[ \cos^2 x\frac{dy}{dx} + y = \tan x\]
\[ \Rightarrow \frac{dy}{dx} + \left( \sec^2 x \right)y = \left( \tan x \right) \sec^2 x\]
\[\text{Comparing with }\frac{dy}{dx} + Px = Q,\text{ we get}\]
\[P = \sec^2 x \]
\[Q = \left( \tan x \right)\left( \sec^2 x \right)\]
Now,
\[I . F . = e^{\int \sec^2 x dx} = e^{\tan x} \]
So, the solution is given by
\[y \times e^{\tan x} = \int\left( \tan x \right)\left( \sec^2 x \right) \times e^{\tan x} dx + C\]
\[ \Rightarrow y e^{\tan x} = I + C . . . . . . . . . . \left( 1 \right)\]
Now,
\[I = \int\left( \tan x \right)\left( \sec^2 x \right) \times e^{\tan x} dx\]
Putting `t = tan x,` we get
\[dt = \sec^2 x dx\]
\[ = t \times \int e^t dt - \int\left( \frac{d t}{d t} \times \int e^t dt \right)dt\]
\[ = t e^t - \int e^t dt\]
\[ = t e^t - e^t \]
\[ \Rightarrow I = \tan x e^{\tan x} - e^{\tan x} = e^{\tan x} \left( \tan x - 1 \right)\]
Putting the value of `I` in (1), we get
\[y e^{\tan x} = e^{\tan x} \left( \tan x - 1 \right) + C\]
APPEARS IN
संबंधित प्रश्न
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
x2 dy + (x2 − xy + y2) dx = 0
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`