हिंदी

Cos 2 X D Y D X + Y = Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\cos^2 x\frac{dy}{dx} + y = \tan x\]

योग

उत्तर

We have,

\[ \cos^2 x\frac{dy}{dx} + y = \tan x\]

\[ \Rightarrow \frac{dy}{dx} + \left( \sec^2 x \right)y = \left( \tan x \right) \sec^2 x\]

\[\text{Comparing with }\frac{dy}{dx} + Px = Q,\text{ we get}\]

\[P = \sec^2 x \]

\[Q = \left( \tan x \right)\left( \sec^2 x \right)\]

Now,

\[I . F . = e^{\int \sec^2 x dx} = e^{\tan x} \]

So, the solution is given by

\[y \times e^{\tan x} = \int\left( \tan x \right)\left( \sec^2 x \right) \times e^{\tan x} dx + C\]

\[ \Rightarrow y e^{\tan x} = I + C . . . . . . . . . . \left( 1 \right)\]

Now,

\[I = \int\left( \tan x \right)\left( \sec^2 x \right) \times e^{\tan x} dx\]

Putting `t = tan x,` we get

\[dt = \sec^2 x dx\]

\[ = t \times \int e^t dt - \int\left( \frac{d t}{d t} \times \int e^t dt \right)dt\]

\[ = t e^t - \int e^t dt\]

\[ = t e^t - e^t \]

\[ \Rightarrow I = \tan x e^{\tan x} - e^{\tan x} = e^{\tan x} \left( \tan x - 1 \right)\]

Putting the value of `I` in (1), we get

\[y e^{\tan x} = e^{\tan x} \left( \tan x - 1 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 55 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


x2 dy + (x2 − xy + y2) dx = 0


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×