हिंदी

Find the general solution of the differential equation: dydx=3e2x+3e4xex+e-x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`

योग

उत्तर

Given differential equation is `(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`

⇒ `(dy)/(dx) = (3e^(2x)(1 + e^(2x)))/(e^x + 1/e^x)`

⇒ `(dy)/(dx) = (3e^(2x)(1 + e^(2x)))/((e^(2x) + 1)) xx e^x`

⇒ `(dy)/(dx)` = 3e3x

⇒ dy = 3e3xdx

Integrating both sides, we get

`intdy = 3inte^(3x)dx`

⇒ y = `3 e^(3x)/3 + C`

y = `e^(3x) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Outside Delhi Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


The number of arbitrary constants in the particular solution of a differential equation of third order is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


(x + y − 1) dy = (x + y) dx


x2 dy + (x2 − xy + y2) dx = 0


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×