Advertisements
Advertisements
प्रश्न
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
उत्तर
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is `"e"^x . 1/x`.
Explanation:
The given differential equation is `("d"y)/("d"x) + y = (1 + y)/x`
⇒ `("d"y)/("d"x) + y = (1 + y)/x`
⇒ `("d"y)/("d"x) + y = 1/x + y/x`
⇒ `("d"y)/("d"x) + y - y/x = 1/x`
⇒ `("d"y)/("d"x) + (1 - 1/x) = 1/x`
Here P = `(1 - 1/x)`
∴ I.F. = `"e"^(intPdx)`
= `"e"^(int(1 - 1/x)"d"x)`
= `"e"^(x - logx)`
= `"e"^x . "e"^(-logx)`
= `"e"^x . "e"^(log 1/x)`
= `"e"^x . 1/x`
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
(x + y − 1) dy = (x + y) dx
(1 + y + x2 y) dx + (x + x3) dy = 0
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of differential equation coty dx = xdy is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.