हिंदी

The integrating factor of dddydx+y=1+yx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.

रिक्त स्थान भरें

उत्तर

The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is `"e"^x . 1/x`.

Explanation:

The given differential equation is `("d"y)/("d"x) + y = (1 + y)/x`

⇒ `("d"y)/("d"x) + y = (1 + y)/x`

⇒ `("d"y)/("d"x) + y = 1/x + y/x`

⇒ `("d"y)/("d"x) + y - y/x = 1/x`

⇒ `("d"y)/("d"x) + (1 - 1/x) = 1/x`

Here P = `(1 - 1/x)`

∴ I.F. = `"e"^(intPdx)`

= `"e"^(int(1 - 1/x)"d"x)`

= `"e"^(x - logx)`

= `"e"^x . "e"^(-logx)`

= `"e"^x . "e"^(log 1/x)`

= `"e"^x . 1/x`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 76.(xi) | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


(x + y − 1) dy = (x + y) dx


(1 + y + x2 y) dx + (x + x3) dy = 0


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of differential equation coty dx = xdy is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×