हिंदी

Find the Particular Solution of the Differential Equation `Tan X (Dy)By(Dx) = 2x Tan X + X^2 - Y`; `(Tan X Not Equal 0)` Given that Y = 0 When `X - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`

उत्तर

The given differential equation is

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)`

`=> (dy)/(dx) = 2x + x^2 cotx - y cotx`

`=> dy/dx + (cot x)y = 2x + x^2 cot x`

This is a linear differential equation.

Here, P = cot x, Q = 2x + x2 cot x

:. I.F. = `e^(int P dx) = e^(int cot s dx) = e^(log|sin x|) = sin x`

The general solution of this linear differential equation is given by

y(I.F.) = ∫Q(I.F.)dx + C

`=> y*sinx = int(2x + x^2 cotx) sinx dx + C`

`=>y*sinx = int 2xsin x dx + int x^2 cos x dx + C`     

`y*sinx = int2x sin x dx + x^2 sinx - int 2 xsin x + C`     (Applying integration by parts in the 2nd integral)

`=>y*sinx = x^2 sinx +C`......1

When y = 0,  `x = pi/2`  (Given)

`:. 0 xx sin  pi/2 = pi^2/4 sin  pi/4 + C`

`=> C = - pi^2/4`

Substituting the value of C in (1), we get

`ysinx = x^2 sin x - pi^2/4`

`=> (x^2- y) sin x = pi^2/4`

This is the particular solution of the given differential equation

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Delhi Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation representing the curve y = cx + c2.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} + 1 = e^{x + y}\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Find the differential equation of all non-horizontal lines in a plane.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Which of the following differential equations has `y = x` as one of its particular solution?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×