Advertisements
Advertisements
प्रश्न
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
विकल्प
log y = kx
y = kx
xy = k
y = k log x
उत्तर
y = kx
We have,
\[\frac{dy}{dx} = \frac{y}{x}\]
\[ \Rightarrow \frac{1}{y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \log y = \log x + \log k\]
\[ \Rightarrow \log y - \log x = \log k\]
\[ \Rightarrow \log\left( \frac{y}{x} \right) = \log k\]
\[ \Rightarrow \frac{y}{x} = k\]
\[ \Rightarrow y = kx\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Find the differential equation of all non-horizontal lines in a plane.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of differential equation coty dx = xdy is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.