Advertisements
Advertisements
प्रश्न
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
पर्याय
log y = kx
y = kx
xy = k
y = k log x
उत्तर
y = kx
We have,
\[\frac{dy}{dx} = \frac{y}{x}\]
\[ \Rightarrow \frac{1}{y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \log y = \log x + \log k\]
\[ \Rightarrow \log y - \log x = \log k\]
\[ \Rightarrow \log\left( \frac{y}{x} \right) = \log k\]
\[ \Rightarrow \frac{y}{x} = k\]
\[ \Rightarrow y = kx\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
cos (x + y) dy = dx
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.