Advertisements
Advertisements
प्रश्न
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
उत्तर
We have,
\[\left( 1 + y^2 \right)dx = \left( \tan^{- 1} y - x \right)dy\]
\[ \Rightarrow \frac{dx}{dy} = \frac{\tan^{- 1} y - x}{1 + y^2}\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{\tan^{- 1} y}{1 + y^2}\]
\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get}\]
\[P = \frac{1}{1 + y^2} \]
\[Q = \frac{\tan^{- 1} y}{1 + y^2}\]
Now,
\[I . F . = e^{\int\frac{1}{1 + y^2}dy} = e^{\tan^{- 1} y} \]
So, the solution is given by
\[x \times e^{\tan^{- 1} y} = \int\frac{\tan^{- 1} y}{1 + y^2} \times e^{\tan^{- 1} y} dy + C\]
\[ \Rightarrow x e^{\tan^{- 1} y} = I + C . . . . . . . . \left( 1 \right)\]
Now,
\[I = \int\frac{\tan^{- 1} y}{1 + y^2} \times e^{\tan^{- 1} y} dy\]
\[\text{Putting }t = \tan^{- 1} y,\text{ we get}\]
\[dt = \frac{1}{1 + y^2}dy\]
\[\therefore I = \int\underset{I}{t}\times \underset{II}{e^t} \text{ }dt\]
\[ = t \times \int e^t dt - \int\left( \frac{d t}{d t} \times \int e^t dt \right)dt\]
\[ = t e^t - \int e^t dt\]
\[ = t e^t - e^t \]
\[ \therefore I = \tan^{- 1} y e^{\tan^{- 1} y} - e^{\tan^{- 1} y} \]
\[ = e^{\tan^{- 1} y} \left( \tan^{- 1} y - 1 \right)\]
Putting the value of `I` in (1), we get
\[x e^{\tan^{- 1} y} = e^{\tan^{- 1} y} \left( \tan^{- 1} y - 1 \right) + C\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
If y = etan x+ (log x)tan x then find dy/dx
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} - y \tan x = e^x\]
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.