Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
उत्तर
Given:
(1−y2)(1+logx)dx+2xydy=0
⇒(1−y2)(1+logx)dx=−2xydy
`=>((1+logx)/(2x))dx=-(y/(1-y^2))dy" ......(1)"`
Let:
1+logx=t and
(1−y2)=p
`=>1/xdx=dt " and " −2ydy=dp`
Therefore, (1) becomes
`intt/2dt=int1/(2p)dp`
`=>t^2/4=logp/2+C "......(2)"`
Substituting the values of t and p in (2), we get
`((1+logx^2))/4=log(1-y^2)/2+C " ......3"`
At x=1 and y=0, (3) becomes
`C= 1/4`
Substituting the value of C in (3), we get
`(1+logx^2)/4=log(1-y^2)/2+1/4`
⇒(1+logx2)=2log(1−y2)+1
Or
(logx2)+logx2=log(1−y2)2
It is the required particular solution
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`