मराठी

Find the general solution of y2dx + (x2 – xy + y2) dy = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of y2dx + (x2 – xy + y2) dy = 0.

बेरीज

उत्तर

The given equation is y2dx + (x2 – xy + y2) dy = 0

⇒ y2dx = – (x2 – xy + y2)dy

⇒ `"dx"/"dy" = - (x^2 - xy + y^2)/y^2`

Since it is a homogeneous differential equation

∴ Put x = vy

⇒ `"dx"/"dy" = "v" + y * "dv"/"dy"`

So, `"v" + y * "dv"/"dy" = - (("v"^2y^2 - "v"y^2 + y^2)/y^2)`

⇒ `"v" + y * "dv"/"dy" = -(y^2("v"^2 - "v" + 1))/y^2`

⇒ `"v" + y * "dv"/"dy" = (-"v"^2 + "v" - 1)`

⇒ `y * "dv"/"dy" = - "v"^2 + "v" - 1 = "v"`

⇒ `y * "dv"/"dy" = - "v"^2 - 1`

⇒ `"dv"/(("v"^2 + 1)) = - "dy"/y`

Integrating both sides, we get

⇒ `int "dv"/(("v"^2 + 1)) = -int "dy"/y`

⇒ `tan^-1"v" = - log y + "c"`

⇒  `tan^-1(x/y) + log y + "c"`

Hence the required solution is `tan^-1(x/y) + log y + "c"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 18 | पृष्ठ १९४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} = \left( x + y \right)^2\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[\frac{dy}{dx} + y = 4x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×