मराठी

The Number of Arbitrary Constants in the Particular Solution of a Differential Equation of Third Order is - Mathematics

Advertisements
Advertisements

प्रश्न

The number of arbitrary constants in the particular solution of a differential equation of third order is

पर्याय

  • 3

  • 2

  • 1

  • 0

MCQ

उत्तर

0

 

The number of arbitrary constants in the particular solution of a differential equation is always zero.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 44 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×