Advertisements
Advertisements
प्रश्न
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
उत्तर
Given equation is y = (sin–1x)2 + Acos–1x + B
`"dy"/"dx" = 2 sin^-1x * 1/sqrt(1 - x^2) + "A" * ((-1)/sqrt(1 - x^2))`
Multiplying both sides by `sqrt(1 - x^2)`, we get
`sqrt(1 - x^2) "dy"/"dx" = 2sin^-1x - "A"`
Again differentiating w.r.t x, we get
`sqrt(1 - x^2) ("d"^2y)/("d"x^2) + "dy"/"dx" * (1 xx (-2x))/(2sqrt(1 - x^2)) = 2/sqrt(1 - x^2)`
⇒ `sqrt(1 - x^2) ("d"^2y)/("d"x^2) - x/sqrt(1 - x^2) "dy"/"dx" * 2/sqrt(1 - x^2)`
Multiplying both sides by `sqrt(1 - x^2)`, we get
⇒ `(1 - x^2) ("d"^2y)/("d"x^2) - x "dy"/"dx" - 2` = 0
Which is the required differential equation.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`