मराठी

Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.

बेरीज

उत्तर

Given equation is y = (sin–1x)2 + Acos–1x + B

`"dy"/"dx" = 2 sin^-1x * 1/sqrt(1 - x^2) + "A" * ((-1)/sqrt(1 - x^2))`

Multiplying both sides by `sqrt(1 - x^2)`, we get

`sqrt(1 - x^2) "dy"/"dx" = 2sin^-1x - "A"`

Again differentiating w.r.t x, we get

`sqrt(1 - x^2)  ("d"^2y)/("d"x^2) + "dy"/"dx" * (1 xx (-2x))/(2sqrt(1 - x^2)) = 2/sqrt(1 - x^2)`

⇒ `sqrt(1 - x^2) ("d"^2y)/("d"x^2) - x/sqrt(1 - x^2) "dy"/"dx" * 2/sqrt(1 - x^2)`

Multiplying both sides by `sqrt(1 - x^2)`, we get

⇒ `(1 - x^2) ("d"^2y)/("d"x^2) - x "dy"/"dx" - 2` = 0

Which is the required differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 13 | पृष्ठ १९४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×