Advertisements
Advertisements
प्रश्न
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
उत्तर
Given that: (1 + tan y)(dx – dy) + 2xdy = 0
⇒ (1 + tan y)dx – (1 + tan y)dy + 2xdy = 0
⇒ (1 + tan y)dx – (1 + tan y – 2x)dy = 0
⇒ `(1 + tan y) "dx"/"dy" = (1 + tan y - 2x)`
⇒ `"dx"/"dy" = (1 + tan y - 2x)/(1 + tan y)`
⇒ `"dx"/"dy" = 1 - (2x)/(1 + tan y)`
⇒ `"dx"/"dy" + (2x)/(1 + tan y)` = 1
Here, P = `2/(1 + tan y)` and Q = 1
Integrating factor I.F.
= `"e"^(int 2/(1 + tan y) "dy")`
= `"e"^(int (2cosy)/(siny + cosy)"d"y)`
= `"e"^(int (siny + cosy - siny + cosy)/((siny + cosy)) "dy"`
= `"e"^(int(1 + (cosy - siny)/(siny + cosy))"d"y)`
= `"e"^(int 1."d"y) . "e"^(int(cosy - siny)/(siny + cosy)"d"y)`
= `"e"^y . "e"^(log(siny + cosy)`
= `"e"^y . (siny + cos y)`
So, the solution is `x xx "I"."F". = int "Q" xx "I"."F". "d"y + "c"`
⇒ `x . "e"^y (siny + cosy) = int 1 . "e"^y (siny + cosy)"d"y + "c"`
⇒ `x . "e"^y )siny + cosy) = "e"^y . sin y + "c"` .....`[because int x^x "f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "c"]`
⇒ `x(siny + cos y) = sin y + "c" . "e"^-y`
Hence, the required solution is `x(siny + cos y) = sin y + "c" . "e"^-y`.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
If y = etan x+ (log x)tan x then find dy/dx
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
cos (x + y) dy = dx
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution of differential equation xdy – ydx = 0 represents : ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.