मराठी

Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.

बेरीज

उत्तर

Given that: (1 + tan y)(dx – dy) + 2xdy = 0

⇒ (1 + tan y)dx – (1 + tan y)dy + 2xdy = 0

⇒ (1 + tan y)dx – (1 + tan y – 2x)dy = 0

⇒ `(1 + tan y) "dx"/"dy" = (1 + tan y - 2x)`

⇒ `"dx"/"dy" = (1 + tan y - 2x)/(1 + tan y)`

⇒ `"dx"/"dy" = 1 - (2x)/(1 + tan y)`

⇒ `"dx"/"dy" + (2x)/(1 + tan y)` = 1

Here, P = `2/(1 + tan y)` and Q = 1

Integrating factor I.F.

= `"e"^(int 2/(1 + tan y) "dy")`

= `"e"^(int (2cosy)/(siny + cosy)"d"y)`

= `"e"^(int (siny + cosy - siny + cosy)/((siny + cosy)) "dy"`

= `"e"^(int(1 + (cosy - siny)/(siny + cosy))"d"y)`

= `"e"^(int 1."d"y) . "e"^(int(cosy - siny)/(siny + cosy)"d"y)`

= `"e"^y . "e"^(log(siny + cosy)`

= `"e"^y . (siny + cos y)`

So, the solution is `x xx "I"."F". = int "Q" xx "I"."F".  "d"y + "c"`

⇒ `x . "e"^y (siny + cosy) = int 1 . "e"^y (siny + cosy)"d"y + "c"`

⇒ `x . "e"^y )siny + cosy) = "e"^y . sin y + "c"`  .....`[because int x^x "f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "c"]`

⇒ `x(siny + cos y) = sin y + "c" . "e"^-y`

Hence, the required solution is `x(siny + cos y) = sin y + "c" . "e"^-y`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 26 | पृष्ठ १९४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


If y = etan x+ (log x)tan x then find dy/dx


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


cos (x + y) dy = dx


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Solution of differential equation xdy – ydx = 0 represents : ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×